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Abstract: - Due to the missing formal foundation of UML, the semantics of a number of UML constructs is not 

precisely defined. Based on our previous work on formalizing class and sequence diagrams, a method for 

transforming a subset of UML state machine diagram into Z specification is proposed for the purpose of 

formally checking consistency in multi view modeling. The consistency of the resulting specification is 

guaranteed by providing a set of well-formedness and consistency rules. It is worth noting that our multi view 

approach is the first work on state machine diagram formalization based on Z notation. Our approach is 

illustrated using an example taken from the literature. 
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1 Introduction 
Currently, UML [1, 2] is widely used during 

software design phases. However, when using UML 

in multi view modeling context, models cannot be 

verified and analyzed formally because of the lack 

of formal semantics. This requires a semantics 

specification which captures, in a precise way, both 

the structural and the dynamic features of modeled 

system. 

  Z  [3] is a formal specification language based 

upon set theory and mathematical logic which 

provides formal foundation to analyze semantics 

and verify correctness. This paper presents our 

approach of formal modeling and validation for the 

UML State machine diagram using Z. The 

formalization is based on our previous work on 

transforming UML class and sequence diagram into 

Z specification in order to guarantee a multi view 

consistency [4, 5]. The resulting specification can 

then be analyzed by Z tools and hence formally 

prove or disprove the system safety.  
This paper is organized as follows. Section 2 

provides a description of related work along the 

lines of our motivation. Section 3 presents our 

approach in formalizing UML state machine 

diagram using Z notation. Section 4 overviews a set 

of well-formedness and consistency rules handled 

by the proposed model. Examples are offered to 

demonstrate the approach. Finally, Section 5 

concludes the paper and outlines some future 

directions of our work. 

2 Related Work 
In fact, several studies have been undertaken to 

formalize UML diagrams. Especially, there has been 

much interest in formalizing UML state machine 

diagram to improve its shortfalls. 

Tian and Gu  [6] presented an approach of formal 

modeling and validation for software process, which 

transforms UML models based on Rational Unified 

Process (RUP) to Colored Petri Nets (CPN) and 

uses CPN tools to investigate the behavior of 

modeled system. A new approach for modeling 

state-chart Diagrams in B is proposed by Ledang 

and Souquières  [7]. Only the modeling of UML 

concepts in B is considered. The problem of 

analyzing the derived B specification is not treated. 

Meng et al.  [8] provided a formalization for UML 

state machine diagrams in the RAISE specification 

language RSL. McUmber and Cheng  [9] introduced 

a general framework for formalizing a subset of 

UML diagrams in terms of different formal 

languages based on a mapping between metamodels 

describing UML and a formal language. UML is 

formalized in terms of Promela. Latella et al.  [10] 

set the basis for the development of a formal 

semantics for UML state machine diagrams based 

on Kripke structures. A mapping of state machine 

diagrams to the intermediate format of extended 

hierarchical automata is proposed and then an 

operational semantics for these automata is defined. 

Our approach does not require an intermediate 

format, the diagram is directly translated into Z 
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specification. A formal semantics for a subset of 

state machine diagram is proposed by David 

 [11]. The subset and semantics are very close to the 

one supported by the tool Rhapsody. Mostafa 

 [12] presented a formalization of different UML 

diagrams using Z notation. Unlike our work, the 

consistency between them has not been treated.

work done by  [13] presented an approach to 

transform up to three different UML behavioral 

diagrams (sequence, behavioral state machines, and 

activity) into a single Transition System to support 

model checking of software based on UML but 

inconsistencies between diagrams are not dete

In the paper  [14], an automatic translation of UML 

behavioral diagrams into formal models is proposed 

in order to be verified by a symbolic model checker

Furthermore, the multi view verification has not 

been addressed by this work. A study done by 

uses labelled transition systems as the semantic 

model to provide a formal semantics for UML state 

machines features. The paper  [16]

verification of UML state machine diagram by 

translation to UML-B using the Rodin platform and 

its automatic proof tools. 

However, most of these works only focus on 

formalization of UML state machine diagrams 

without checking consistency and correctness in 

multi view modeling, and give up the advantage of 

unifying different models in one specification. Our 

approach is characterized by its clarity and 

conciseness. In this paper, we address the problem 

of modeling UML state machine diagrams using Z 

notation in multi view modeling, which has not 

been, so far, completely treated. This work forms a 

continuation of the previous work on formalizing 

UML class and sequence diagrams in Z [4, 5

 

 

3 Z Formalization of UML State 

Machine Diagram 
 

 

3.1 Overview of UML state machine 

diagrams 
UML state machine diagram is an important 

component of UML for specifying the dynamic 

behavior of systems. Each state machine diagram 

basically consists of the states an object can occupy 

and the transitions which make the object change 

from one state to another according to a set of well

formedness rules. Each transition is characterized by 

an event which is an invocation of an operation in 

this object and contains a guard and an optional 

action. 

A formal semantics for a subset of 

state machine diagram is proposed by David et al. 

. The subset and semantics are very close to the 

one supported by the tool Rhapsody. Mostafa et al. 

presented a formalization of different UML 

diagrams using Z notation. Unlike our work, the 

consistency between them has not been treated. The 

an approach to 

transform up to three different UML behavioral 

diagrams (sequence, behavioral state machines, and 

activity) into a single Transition System to support 

model checking of software based on UML but 

inconsistencies between diagrams are not detected. 

, an automatic translation of UML 

behavioral diagrams into formal models is proposed 

to be verified by a symbolic model checker. 

rthermore, the multi view verification has not 

A study done by  [15] 

uses labelled transition systems as the semantic 

a formal semantics for UML state 

[16] proposes a 

verification of UML state machine diagram by 

B using the Rodin platform and 

However, most of these works only focus on 

f UML state machine diagrams 

without checking consistency and correctness in 

multi view modeling, and give up the advantage of 

unifying different models in one specification. Our 

approach is characterized by its clarity and 

ddress the problem 

of modeling UML state machine diagrams using Z 

notation in multi view modeling, which has not 

This work forms a 

continuation of the previous work on formalizing 

UML class and sequence diagrams in Z [4, 5]. 

Z Formalization of UML State 

Overview of UML state machine 

UML state machine diagram is an important 

component of UML for specifying the dynamic 

behavior of systems. Each state machine diagram 

states an object can occupy 

and the transitions which make the object change 

from one state to another according to a set of well-

formedness rules. Each transition is characterized by 

an event which is an invocation of an operation in 

ains a guard and an optional 

In this paper, we present a

UML state machine diagrams using Z notation. We 

will refer to a subset of UML state machine 

diagrams which, nevertheless, includes all the 

interesting concepts. Our goal 

consistency of views in multi

object-oriented systems based on UML. We focus 

on three different views of a system, comprising 

class diagram, sequence diagram and state machine 

diagram. The semantics of state machine diagram

is analyzed as well as its relevant problems with 

class and sequence diagrams that are also 

formalized in Z. Full details on modeling class and 

sequence diagrams are given respectively in [4, 5]. 

The video on demand system (VOD), proposed by 

Lopez-Herrejon and Egyed 

example to illustrate our approach.

Given an UML class diagram of the VOD

as shown in Figure 1. The class diagram presents 

three classes Service, Streamer

by associations. Operations are defined for each 

class.  

Fig. 1: Class diagram of VOD system

 

A sequence diagram in Figure 2 illustrates a call 

of method select in a Service

method stream from Service

Fig. 2: Example of sequence diagram in VOD system

In this paper, we present a formalization of the 

UML state machine diagrams using Z notation. We 

will refer to a subset of UML state machine 

diagrams which, nevertheless, includes all the 

interesting concepts. Our goal is to check the 

consistency of views in multi-view modeling of 

oriented systems based on UML. We focus 

on three different views of a system, comprising 

class diagram, sequence diagram and state machine 

diagram. The semantics of state machine diagrams 

is analyzed as well as its relevant problems with 

class and sequence diagrams that are also 

formalized in Z. Full details on modeling class and 

sequence diagrams are given respectively in [4, 5]. 

The video on demand system (VOD), proposed by 

on and Egyed  [17] is used as an 

example to illustrate our approach. 

Given an UML class diagram of the VOD system 

as shown in Figure 1. The class diagram presents 

Streamer and Program linked 

by associations. Operations are defined for each 

 
: Class diagram of VOD system 

A sequence diagram in Figure 2 illustrates a call 

Service object and a call of 

Service to Streamer. 

 
: Example of sequence diagram in VOD system 
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Figure 3 shows an example of an UML state 

machine diagram which may be used to specify the 

behavior of a Service object. Objects of class 

Service have two possible states: Init 

The change of the state is triggered by 

stop. 

Fig. 3: State machine diagram of a Service Object

 

 In the following, we discuss the 

of state machine diagram by transforming it into a Z 

specification.  

 

 

3.2 Translating UML state machine 

diagrams into Z specification 
A state machine diagram is basically composed by a 

set of states and transitions among them according 

to a set of well-formedness rules. 

We start by representation of the notion of states. 

The formal specification of state machine diagram 

could include the declaration: 

 
introducing a basic type to represent the set of all 

states. Two variables of the type STATE are 

introduced by the following declaration to define the 

initial and final states of state machine diagram. The 

initial state denotes the default starting point for the 

state machine. The final state shows that the 

execution of the state machine has been terminated.

 

 

For every object, the function statesOfObject returns 

the set of its states. 

 

 

Another basic notion is transitions. Transitions are 

relationships among states. A transition designates 

that an object will change his current state to 

another. The first and second states are called source 

and target states. A transition can have multipl

sources representing a join from multiple states as 

well as multiple targets in case of a fork to multiple 

states. A specific action is executed when an event 

occurs and therefore the guard is evaluated. If the 

guard is true, the transition may be enable

Figure 3 shows an example of an UML state 

machine diagram which may be used to specify the 

ct. Objects of class 

 and Streaming. 

The change of the state is triggered by select, go and 

 
: State machine diagram of a Service Object 

In the following, we discuss the semantics 

of state machine diagram by transforming it into a Z 

Translating UML state machine 

A state machine diagram is basically composed by a 

set of states and transitions among them according 

We start by representation of the notion of states. 

The formal specification of state machine diagram 

a basic type to represent the set of all 

states. Two variables of the type STATE are 

introduced by the following declaration to define the 

initial and final states of state machine diagram. The 

initial state denotes the default starting point for the 

e machine. The final state shows that the 

execution of the state machine has been terminated. 

 

For every object, the function statesOfObject returns 

 

Another basic notion is transitions. Transitions are 

relationships among states. A transition designates 

that an object will change his current state to 

another. The first and second states are called source 

and target states. A transition can have multiple 

sources representing a join from multiple states as 

well as multiple targets in case of a fork to multiple 

states. A specific action is executed when an event 

occurs and therefore the guard is evaluated. If the 

guard is true, the transition may be enabled; 

otherwise, it is disabled. Formally, a transition is 

specified as follows: 

 

According to the current UML standard [1, 2],

event can be either a call event or a signal event. We 

define an event as a free type EVENT in which 

every element is either a SignalEvent or the result of 

applying the function OperationAsCallEvent to an 

element of type OP defined in our previous work on 

class diagram [4, 5]. OP

enumerated set representing

The signal event is not detailed in this paper; we 

specify it as a constant. 

 

 

A guard is defined as a

necessity to introduce the free type BOOL.

 

 

An effect specifies an optional behavioral,

therefore we formalize it as a free type introducing a 

constant named Action and the constant NullEffect 

when the transition has no effect.

 

 

The function isTargetOf, regarded as a function

from a couple of state and transition to a state, is a 

total function: each state is related to exactly one 

state using a specific transition. This function will 

be used later in the state machine diagr

definition. 

 

 

Now, the semantics of the state machine diagram

can be fully formalized using the previous 

definitions.  

A state machine diagram specifies the behavior of a 

specific object. In Z, a schema consists of two parts: 

otherwise, it is disabled. Formally, a transition is 

 
According to the current UML standard [1, 2], an 

event can be either a call event or a signal event. We 

define an event as a free type EVENT in which 

SignalEvent or the result of 

applying the function OperationAsCallEvent to an 

element of type OP defined in our previous work on 

OP is introduced as an 

ing all the class operations. 

The signal event is not detailed in this paper; we 

 

A guard is defined as a boolean type, hence the 

necessity to introduce the free type BOOL. 

 
 

An effect specifies an optional behavioral, 

therefore we formalize it as a free type introducing a 

constant named Action and the constant NullEffect 

when the transition has no effect.  

 
 

The function isTargetOf, regarded as a function 

from a couple of state and transition to a state, is a 

total function: each state is related to exactly one 

state using a specific transition. This function will 

be used later in the state machine diagram 

 
 

Now, the semantics of the state machine diagram 

can be fully formalized using the previous 

A state machine diagram specifies the behavior of a 

specific object. In Z, a schema consists of two parts: 
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a declaration of variables; and 

constraining their values  [18]. 

In the declaration part of the schema named 

StatechartDiagram, we introduce two variables: a 

variable Obj of type OBJECT is the object whose 

behavior is specified by the state machine diagram. 

The second variable named statechart specifies the 

components of the state machine diagram.

A state machine is defined by the set of states and 

the set of transitions relating between them;

distinguish between the states sources of transitions 

and states targets of transitions.  

We introduce the variable statechart as a set of 

cartesian product consisting of all tuples of th

( STATE × TRANSITION × STATE

respectively corresponds to the source state of 

transition, the transition and the target state.

 

 

The predicate part states that source and target of 

transitions must belong to the set of states of the 

object whose behavior is described by the state 

machine diagram. This predicate also denotes that 

an initial state can never be a target of a transition. 

Similarly, a final state cannot be a source of 

transition. 

es; and predicates 

In the declaration part of the schema named 

, we introduce two variables: a 

variable Obj of type OBJECT is the object whose 

behavior is specified by the state machine diagram. 

The second variable named statechart specifies the 

components of the state machine diagram. 

A state machine is defined by the set of states and 

nsitions relating between them; we 

distinguish between the states sources of transitions 

We introduce the variable statechart as a set of 

consisting of all tuples of the form 

STATE ) which 

respectively corresponds to the source state of 

transition, the transition and the target state. 

 
 

The predicate part states that source and target of 

of states of the 

object whose behavior is described by the state 

machine diagram. This predicate also denotes that 

an initial state can never be a target of a transition. 

Similarly, a final state cannot be a source of 

Applying this formalization to the example of VOD 

system in Figure 3, the state machine diagram

Service object will be described

set: 

Statechart={(INITIALSTATE

                     (Init , go , Streaming),

                   (Streaming , stop

 

Therefore, the predicate stating

never a final state and the

state is verified. 

 

An initialization schema is provided to define the 

initial value of the state machine diagram. A 

statechart is initially an empty set.

 

 

To check that the components of the state

machine diagram are consistent, it is enough to 

establish that an initial state ma

hence also that at least one state machine exists 

fulfilling the requirements defined in the predicate 

part of the schema statechartDiagram.

 

 

In Z, if a component represents an input, then its 

name should end with a query (

operation of changing a state requires two

The current state of the object, and the chosen 

transition. We model these as two input components 

currentState? and transition?, of types STATE and 

TRANSITION, respectively. 

The operation of changing state is described by:

 

 

on to the example of VOD 

system in Figure 3, the state machine diagram of 

will be described by the following 

Statechart={(INITIALSTATE , select , Init), 

, Streaming),  

, stop , FINALSTATE)} 

stating that the source is 

the target is never an initial 

ialization schema is provided to define the 

initial value of the state machine diagram. A 

statechart is initially an empty set. 

 

To check that the components of the state 

machine diagram are consistent, it is enough to 

establish that an initial state machine exists and 

hence also that at least one state machine exists 

fulfilling the requirements defined in the predicate 

part of the schema statechartDiagram. 

 

represents an input, then its 

name should end with a query (?)  [18]. The 

operation of changing a state requires two inputs: 

he current state of the object, and the chosen 

transition. We model these as two input components 

currentState? and transition?, of types STATE and 

TRANSITION, respectively.  

The operation of changing state is described by: 
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The effect of this operation is defined only when

guard of the transition is satisfied. 

Once a UML state machine diagram is translated 

into a Z specification, the multi view consistency 

can be analyzed using Z tools. The predicate part of 

the schema StatechartDiagram will be discussed in 

details in Section 4 by means of a series of well

formedness rules. 

 

 

4 Well-Formedness Rules in Multi 

View Modeling 
In order to ensure the correctness of a state machine 

diagram and its consistency with class and sequence 

diagrams in multi view modeling, a set of well

formedness and consistency rules must be satisfied. 

We provide through the proposed model the 

formalization of these well-formedness rules using 

Z notation. We used published well

rules to show the effectiveness of our model.

 

 

4.1 Intra-view well-formedness rules

and transitions 
Two additional functions that return respectively the 

set of transitions departing from and entering a 

specific state are used in the formal definition of the 

consistency rules. 

 
Rule 1: A final state cannot have any outgoing 

transitions.  

This rule is represented as a predicate in the schema 

statechartDiagram by the following Z expression 

using the outgoings function defined above.

 

 
Rule 2: An initial state can have at most one 

outgoing transition and no incomings transitions. 

The formalization of this rule is similar to rule 1.

 

operation is defined only when the 

Once a UML state machine diagram is translated 

into a Z specification, the multi view consistency 

can be analyzed using Z tools. The predicate part of 

l be discussed in 

details in Section 4 by means of a series of well-

Formedness Rules in Multi 

In order to ensure the correctness of a state machine 

diagram and its consistency with class and sequence 

ti view modeling, a set of well-

formedness and consistency rules must be satisfied. 

We provide through the proposed model the 

formedness rules using 

Z notation. We used published well-formedness 

f our model. 

formedness rules: states 

Two additional functions that return respectively the 

set of transitions departing from and entering a 

specific state are used in the formal definition of the 

 

: A final state cannot have any outgoing 

This rule is represented as a predicate in the schema 

statechartDiagram by the following Z expression 

using the outgoings function defined above. 

 

: An initial state can have at most one 

outgoing transition and no incomings transitions. 

The formalization of this rule is similar to rule 1. 

 

 

4.2 Consistency rules between state machine 

diagrams and class diagrams
A state machine diagram can show the different 

states of an object also how 

one state to another using transitions. Objects and 

states in state machine diagrams are related to class 

diagrams. Therefore, some consistency rules 

between class diagram and state machine diagram 

must be satisfied to ensure a multi

 

Rule 3: an object that the state machine diagram 

describes must correspond to an instance of a class 

in class diagrams  [19]. 

To express this consistency rule, a Z theorem is 

provided. The following theorem states that the 

object whose behavior is specified by the state 

machine diagram must belong to the set of obj

of an existing class defined in class diagram.

 

 

 

The function ObjectsOfClass returns for each class 

the set of its instances. CLASS and OBJECT are 

defined in the class diagram formalization. More 

details are available in  [4]. 

 

 
Rule 4: if the event related to a transition in state 

machine diagrams is to call an operation of a class, 

the operation must be defined as an operation in 

owner’s class  [17]. The relation inverse of the 

function OperationAsCallEvent is used to reach the 

operation used in the event definition. This 

operation must belong to the set of operations 

corresponding to the object Obj.

 

 

The function methodsOfObject defined in our 

previous work on sequence diagram formalization 

 

Consistency rules between state machine 

diagrams and class diagrams 
A state machine diagram can show the different 

states of an object also how an object changes from 

one state to another using transitions. Objects and 

states in state machine diagrams are related to class 

diagrams. Therefore, some consistency rules 

between class diagram and state machine diagram 

must be satisfied to ensure a multi view consistency. 

: an object that the state machine diagram 

describes must correspond to an instance of a class 

To express this consistency rule, a Z theorem is 

provided. The following theorem states that the 

object whose behavior is specified by the state 

machine diagram must belong to the set of objects 

of an existing class defined in class diagram. 

 

The function ObjectsOfClass returns for each class 

the set of its instances. CLASS and OBJECT are 

defined in the class diagram formalization. More 

 

 

: if the event related to a transition in state 

machine diagrams is to call an operation of a class, 

the operation must be defined as an operation in 

. The relation inverse of the 

function OperationAsCallEvent is used to reach the 

operation used in the event definition. This 

operation must belong to the set of operations 

e object Obj. 

 

The function methodsOfObject defined in our 

previous work on sequence diagram formalization 
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 [5] returns the set of the class oper

corresponding to each object. 

 

 

4.3 Consistency rules between state machine 

diagrams and sequence diagrams
As one of UML behavioral diagrams, sequence 

diagrams illustrate object interaction. A consistency 

problem may occur caused by the fact that 

components of the sequence diagram may be 

described by more than one diagram. Hence, the 

consistency of the system should be checked.

We define the semantics of a state machine diagram 

in the context of a sequence diagram that is also 

formalized. 

Rule 5: if an event in state machine diagram is to 

call an operation, the operation should be a message 

in sequence diagram. 

The sequence diagram is previously defined in 

as a Z sequence of messages. Each message is 

defined by a tuple representing the sender of the 

message, the receiver of the message and the 

operation invoked. 

Therefore, in order to ensure the consistency 

between state machine and sequence diagrams, the 

operation invoked by the call event must appear in a 

message of an existing sequence diagram.

 

As shown above, this predicate is included in the 

predicate part of the schema statechartDiagram in 

order to guarantee the multi view consistency.

Checking these properties for the class and sequence 

diagrams of VOD system introduced respectively in 

Figure 1 and Figure 2, the well formedness rules are 

satisfied. The operations invoked by the state 

machine diagram in Figure 3 are defined by

class Service and used as messages in sequence 

diagram. 

The set of operations of the object o1 is as follows:

methodsOfObject o1={select, go, stop} 

The sequence diagram in Figure 2 illustrates a call 

of method select in an object o1 of type Service. 

The operation select is also invoked by the transition 

which makes the object of type Service change from 

the initial state to the state Init. Therefore, 

formedness rule 6 is satisfied. The operations go and 

returns the set of the class operations 

Consistency rules between state machine 

diagrams and sequence diagrams 
As one of UML behavioral diagrams, sequence 

diagrams illustrate object interaction. A consistency 

problem may occur caused by the fact that some 

components of the sequence diagram may be 

described by more than one diagram. Hence, the 

consistency of the system should be checked. 

We define the semantics of a state machine diagram 

in the context of a sequence diagram that is also 

: if an event in state machine diagram is to 

call an operation, the operation should be a message 

The sequence diagram is previously defined in  [5] 

as a Z sequence of messages. Each message is 

defined by a tuple representing the sender of the 

message, the receiver of the message and the 

Therefore, in order to ensure the consistency 

sequence diagrams, the 

operation invoked by the call event must appear in a 

message of an existing sequence diagram. 

 

As shown above, this predicate is included in the 

predicate part of the schema statechartDiagram in 

nsistency. 

Checking these properties for the class and sequence 

diagrams of VOD system introduced respectively in 

Figure 1 and Figure 2, the well formedness rules are 

satisfied. The operations invoked by the state 

machine diagram in Figure 3 are defined by the 

class Service and used as messages in sequence 

The set of operations of the object o1 is as follows: 

methodsOfObject o1={select, go, stop}  

The sequence diagram in Figure 2 illustrates a call 

of method select in an object o1 of type Service. 

The operation select is also invoked by the transition 

which makes the object of type Service change from 

the initial state to the state Init. Therefore, the well-

formedness rule 6 is satisfied. The operations go and 

stop invoked in the state diagram in Figure 3 are not 

used by the sequence diagram illustrated in Figure 

2. In this case, to guarantee the multi view 

consistency, the existence of another seque

diagram which calls these operations must be 

ensured. Often when this is the cas

the model helps understanding the problem and 

therefore suggesting a correc

 

 

5. Conclusions and Future Work

The goal of this paper is to overcome the main 

limitations of UML state machine diagrams 

semantics in multi view modeling. It provides a 

formal semantics of state machi

according to class and sequence diagrams formal 

model previously published. Numerous well

formedness and consistency rules are provided to 

ensure the multi view consistency. The main 

benefits of our approach are the conciseness and 

clarity of the formal model providing one of the first 

Z formal specifications for the state machine 

diagram in multi view context. The resulting Z 

specification allows the definition of a precise and 

unambiguous semantics of UML state machine 

diagram. All the present

thoroughly type-checked using the Z/EVES system 

 [20]. The Z/EVES immediately uncovers such

inconsistencies. As future

considering a large subset of UML state machine 

diagrams and checking consistency with other UML 

diagrams such as use case diagrams

case studies in several domains are in our targets.

addition, we are currently extending

for automatically translating class diagrams into 

specifications  [4] to take into account UML 

behavioral diagrams. 
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